EEEN CHAPTER 7

Electrons in Solids: Electrical and
Thermal Properties

7.1 Introduction

The electrical properties of materials are determined largely by the response of the
electrons to external fields. The central theme of this chapter is electrical conductivity
and how it varies across different classes of materials. The classical Drude model and
how it attempts to explain conductivity and the Hall effect form the starting point.
While providing an explanation of Ohm's law and Joule heating, Drude theory leaves
open the question of why there is such a large difference in conductivity between
different elements of the periodic table.

The Sommerfeld theory for the free-electron gas is then introduced. This treats the
electrons quantum mechanically but ignores the presence of ions. It is applied to the
calculation of the specific heat and the thermopower.

The focus then changes to the quantum theory of crystalline solids. Bloch's theorem
is derived. A quantum-mechanical analysis is given in several limiting cases, such as
the nearly free electron case and the tight-binding case. A qualitative discussion of
the differences among metals, insulators, semiconductors, and semimetals is presented.
Expressions for the density of electronic states are derived. The quantum theory of
solids is then applied to a study of the temperature dependence of the resistivity of
metals.

Following this is a section devoted to semiconductors. The valence and conduction
energy bands are defined and the bandgap energy and effective-mass tensors are intro-
duced. An application of band theory is made to calculation of the magnetoresistance
of semiconductors.

Other phenomena occurring in semiconductors and insulators are considered.
Variable-range hopping is discussed from the viewpoints of Mott and Efros-Shklovskii.
Electrical conductivity in strong electrical fields is considered in the section on the
Poole—Frenkel effect.

Some materials exhibit a radical change in conductivity as physical parameters
are varied. In this chapter we discuss granular metals that are insulators until the
concentration of the metallic inclusions is high enough to cause a percolation transition.

The remainder of the chapter concerns conduction in reduced-dimensional spaces.
A discussion of conduction in carbon nanotubes based on the tight-binding method is
presented. This is followed by the Landauer theory of one-dimensional conductance.
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188 ELECTRONS IN SOLIDS: ELECTRICAL AND THERMAL PROPERTIES

Additional topics covered at our Web site” include further material on the Onsager
relations, the random tight-binding approximation, the Kronig—Penney model, the Hall
effect in band theory, electron localization, and the evaluation of Fermi integrals.

CLASSICAL THEORY OF ELECTRICAL CONDUCTION

When a constant electric field is established in some materials, current flows. Assuming
a local relationship, one writes J(r) = oE(r), where J is the current per unit area
(current density), o the electrical conductivity and E the electric field. For an isotropic
medium, o is a scalar and the vectors J and E are parallel. For an anisotropic material
o becomes a tensor and these vectors need no longer be parallel. The microscopic
form of Ohm’s law states that o is independent of the electric field. Its magnitude
determines whether the material is a conductor (high o), an insulator (low o), or a
semiconductor (intermediate o). The difference in the value of ¢ among materials can
be enormous, varying by more than 20 orders of magnitude in going from a good
conductor to a good insulator. At first sight it is a mystery how, simply by changing
the atomic number a few units in the periodic table. one can observe such a huge
variation in a physical parameter. The answer to the mystery will involve understanding
how tightly (relative to kzT) the valence electrons are bound to the atoms and ions.
We begin this section by studying metals and then proceed to semiconductors and
insulators.

7.2 Drude Theory

An early attempt at a theory of Ohm'’s law was made by Drude, who applied Newtonian
mechanics to study the motion of electrons through a metal. The electrons that are not
tightly bound to atoms or ions (i.e., the “conduction™ electrons), are accelerated by
an applied electric field and are assumed to collide with “scatterers,” which deflect
them and randomize their velocities to a thermal distribution. Consider a sequence of
collisions labeled by the index j. Let the velocity of an electron just after the jth
collision be v;. Between collisions j and j+ 1 the velocity is

E
v =v;— ‘:7(:—:]). (7.1)

since the acceleration is given by —eE/m. The probability of surviving to time 7 without
making a collision and then making a collision between times 7 and 7 4+ dr is

dP = e'“"!’/’d—. (7.2)
T
where 7 is the mean time between collisions. The mean velocity between times 7; and

Tj+1 is

(v;(1) =/v(t)dP=/ [v,— @(r—x,)] ettt/ (7.3)
y m T

7 Supplementary material for this textbook is included on the Web at the resource site (fip://ftp.wiley.com/
public/sci_tech_med/materials). Cross-references to elements of the Web material are prefixed by “W.”
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The direction of v; is random and so will average to zero for all the conduction
electrons. The term —eEt/m is the drift velocity (v). The average current density is

2
= —ne(v(t)) = %E =nenE (7.4)

where n is the number of conduction electrons per unit volume. The parameter u =

(v)/E = et/m is called the mobility of the electron. Thus the Drude conductivity
formula is obtained:

2
. i 3 (1.5)
m

The Joule heating formula may be derived similarly by examining the kinetic energy
loss in a typical collision:

m 5 m 2

e
AK = EV}+1 —_ 5 [VJ - ;E(tj.g.l — fj)] . (76)
e1) = (v3) and (v;) =0, so

On the average (v F

2,252
ARy -2 a.7)
m
Since the mean time between collisions is , the power produced per unit volume is
AK
P =-—n Fax) = oE*. (7.8)

Use has been made of the integral [ t*dP = 272, with dP given by Eq. (7.2). This
power is dissipated as heat through the production of phonons or other excitations of
the metal.

Representative values for the dc electrical conductivity of metals are given in
Table 7.1. The electron density, 7, is computed from the relation n = Nyvp,, /A, where

TABLE 7.1 Parameters of Some Metals at 7 = 295 K

Mass Electron Collision
Atomic Density Density Conductivity Time
Number Valence Pt n o T
Metal A z (10° kgm®) (10 m=3)  [10%Q m)~'] (1078 )
Ag 107.9 1 10.5 0.585 62.1 37.6
Al 26.98 3 2.70 1.81 36.5 7.17
Ba 1373 2 359 0.315 2.6 293
Be 9.012 2 1.82 243 30.8 4.50
Ca 40.08 2 1.53 0.460 27.8 21.5
Cd 112.4 2 8.65 0.927 13.8 5.29
Cs 132.3 1 2.00 0.091 5.0 19.5
Cu 63.55 1 8.93 0.846 58.8 24,7
In 114.8 3 7.29 1.15 11.4 353
K 39.10 1 0.91 0.140 139 35.2
Li 6.939 1 0.54 0.469 10.7 8.11
Mg 24.31 2 1.74 0.862 223 9.18
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N, is Avogadro’s number, z the valence, p;, the mass density, and A the atomic weight.
Note that the SI unit for conductivity is (€2:m)~!. The values of the collision times
computed from Eq. (7.5) are displayed. The ac conductivity of metals is covered in
Section 8.3.

Without collisions o and 7 are infinite and the metal is a perfect conductor. This
state may actually be achieved in superconductors, the subject of Chapter 16.

7.3 Hall Effect in Metals

A conductor that carries an electric current in the presence of a transverse magnetic
field develops a potential difference across the sample perpendicular to both the current
and the magnetic field. This is the Hall effect, and the potential difference produced is
the Hall voltage, V. By measuring Vy it is possible to measure directly the product
ng, the mobile carrier density multiplied by the charge of the carrier.

Figure 7.1 depicts a situation in which a voltage V is impressed across a rectangular
parallelipiped of metal of dimensions L by w by h (assume that L > w and L > h). At
steady state a current / exists and a longitudinal current density J = I/hw is established
in response to the electric field £ = V/L. Ohm’s law relates the two quantities: J = oE.

From Eq. (7.4) it follows that the magnitude of the current density is proportional
to the drift velocity of the carriers, (v) (ie., J = nq(v)). Figure 7.1 is drawn for the
case of carriers of negative charge, (e.g., electrons). A magnetic force on the carrier,
Fg = q(v)B. acts vertically downward. If this were the only force acting. negative
charge would accumulate on the lower face, and to preserve charge neutrality, posi-
tive charge would collect on the upper face. These charge sheets create the Hall
electric field Ey, which is directed downward. Hence there is an upward electro-
static force of magnitude Fy = gEy which will continue to grow until Fy and
Fp equilibrate, giving Ey = (v)B. The resulting Hall voltage is Vg = Eyh. Thus,
finally, an expression for n¢ in terms of macroscopically measurable quantities is
obtained: IB l

= =——), it
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Figure 7.1. Geometry of a Hall effect measurement.
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TABLE 7.2 Comparison of
Measured Hall  Coeffici-
ents with the Free-Electron
Theory Prediction”

Metal —1/Ryne
Li 0.78
Na 0.99
K 1.00
Rb 1.08
Cs 1.11
Ag 1.19
Cu 1.37
Au 1.48
Al —1.00/3
In —1.00/3

“If the prediction were correct,
—1/Ryne=1,

where Ry is called the Hall coefficient. Also, from the formulas E = V/L and I = V/R,
one obtains an expression for the resistance:

L
R= 2 (7.10)
ohw

which is independent of the strength of the magnetic field.

A comparison of measured values of Ry with the free-electron parameters is given
in Table 7.2. For the alkali metals the quantitative agreement is reasonable. It is poorer
for other good conductors and disagrees substantially in magnitude (and sign!) for
In and Al It is curious that if one allowed In and Al to have valence —1 rather
than +3, the agreement with the free-electron theory would be restored. The theory is
further frustrated by the observation that both Ry and p are often found to depend on

the magnetic field. A proper accounting of these anomalies must await the quantum
treatment of metals.

FREE-ELECTRON GASES

7.4 Sommerfeld Theory

Sommerfeld proposed a simple model treating a metal as a free-electron gas confined by
the surfaces of the solid. The electrons, however, are treated using quantum mechanics.
In the bulk of the material, the surface is disregarded altogether and the electrons are
completely free. The free-electron model works best for low-valence metals, such as
the alkalis (Li. Na, K. Rb, Cs), although it is often employed for others as well,
including such valence 3 metals as Al. The ion-core potential is strongly screened by
the valence electrons and the ions are unable to bind the valence electrons. (Note the
self-consistency.) The valence electrons are free to wander about the solid. Recalling
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the fact that the average electric field in a conductor at equilibrium is zero, one can
argue that the same screening effect acts to diminish the electron—electron interaction.
Thus an independent-particle picture may be employed. and each electron is imagined
to interact only with the constant background potential of the solid.

Quantum mechanics enters in two important ways. First, it defines the allowed
eigenstates that the electrons can occupy. Second, since electrons obey Fermi—Dirac
statistics, the Pauli exclusion principle applies (i.e.. at most one electron may occupy
a given eigenstate). These eigenstates are characterized by their wave vector and spin
projection. The single-particle Hamiltonian is simply the free-electron kinetic energy
operator, since the potential energy V(r) is chosen by Sommerfeld to be zero,

P w 2
H = 5= 2mV > (7.11)

The eigenfunctions are plane waves multiplied by a two-element column vector spec-
ifying the spin state
Vi o(r) = €*Tx,. (7.12)

The two independent spin states (up and down) are described by the column vectors

(spinors)
X = [é] . oxe= m . (7.13)

The energy is independent of the spin and grows with increasing k:

(7.14)

Suppose that there are N free electrons in a volume V. At 7 =0 K, the ground
state is obtained by filling the N' lowest-lying energy levels. This implies a maximum
value for occupied k’s, called the Fermi wave vector, kg. It is defined by

Vdk

N = @(kp—-k)=2/—@(kp—k)
kz.s (2m)3

2V

ki
= o7 5 (7.15)

ki
/ dnkidk =V
0 3

Here the unit step function ©(kz — k) imposes the restriction (k < kr). Introducing the
electron number density n = N/V, one finds that

kp = (37 n)3. (7.16)

The electrons have a range of energies extending from zero up to the Fermi energy,
defined by
n*k}
Ep=—=L. (7.17)
2m
The Fermi velocity is defined by vp = fiky/m and the Fermi temperature by Tp =
Er/kg. The total electron energy is computed by integrating the kinetic energy over

h‘”lll"""?ﬂﬂ@l’l‘!k([ I



Zero, one can
n interaction.
n is imagined
s the allowed
Fermi—Dirac
n may occupy
=ctor and spin

kinetic energy
= Z€ro,

(7.11)
n vector spec-

(7.12)

olumn vectors

(7.13)

(7.14)

K. the ground
es a maximum
oy

(7.15)

Introducing the

(7.16)

= Fermi energy,

(7.17)

rature by Tr =
fiC energy over

FREE-ELECTRON GASES 193

the Fermi sphere:

Vd3k hk?

U= ExOkp—k) =2 a9 A

k.s

@(kp k)= —NE;.-, (7.18)

from which it is seen that the average electron energy at 7 =0 K is 60% of the
Fermi energy. Some typical values of k¢, vr, Ef, and Tr are presented in Table 7.3.
Figure 7.2 depicts the Fermi sphere in k space.

At absolute zero the occupancy of any given state is either 1 or 0. At finite
temperatures the occupancy is given by the Fermi-Dirac distribution f(E;, T)=
[exp(B(E; — 1)) + 117! (see Appendix WB at our Web site) where = 1/kzT and

TABLE 7.3 Free-Electron Parameters for Various Metals

kF vr Er T;.‘
Metal (10" m=) (10° m/s) (eV) (10° K)
Ag 1.20 1.39 5.49 63.7
Al 1.75 2.03 11.7 135
Ba 0.977 1413 3.64 42.2
Be 1.93 223 14.2 165
Ca 1.11 1.28 4.68 54.3
Cd 1.40 1.62 747 86.6
Cs 0.646 0.748 1.59 18.4
Cu 1.36 1.57 7.03 81.5
In 1.50 1.74 8.63 100
K 0.745 0.863 2,12 24.6
Li 1.12 1.29 4.74 55.0
Mg 137 1.58 7.11 82.5
Na 0.922 1.07 3.24 37.6
Rb 0.698 0.808 1.86 21.5
Sr 1.02 1.18 3.94 45.7
Zn 157 1.82 9.40 109

A ke
ke
ky
Kx

Figure 7.2. Fermi sphere in k space.
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Figure 7.3. Fermi—Dirac distribution function f(E. T) plotted for several values of T. Both
kyT and E are given in units of s, the chemical potential.

u is the chemical potential of the electrons. A graph of this function is presented in
Fig. 7.3 for several values of T. The size of the step width is seen to be on the order
of kT. In place of Eq. (7.15), there is

vk 1
N=§:f(5k.r)=2/ P FE T
5

v (2m\*? = E" o
_5?<h—3) /0 ePE=I + 17

In place of Eq. (7.18), the internal energy is now given by

Vdik B*k2 I
v=Y EusE=2 [
k.s

(2m)} 2m ePE—1) 4]

v [(2m\*? = E3?

One is interested in these formulas in the limit in which Ef/kgT > 1, which is
valid for metals, as may be seen from Table 7.3. The two required integrals are of
the form
Ej+l/2

lj(ﬁvﬂﬂ)=/:c

with j =0 and j = 1. respectively. One makes a power series in T (see Appendix
W7A) and finds that

1 vy Ty BN a1 5 s
1i(B, Bu) = Grhpan [(ﬂu)-’*“’“ + (J + 5) <J - ;) (B2 - ] ;
3 2
(7.22)
The Fermi energy may be written as

Er = Glo). (7.23)
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Solving for the chemical potential in terms of Ef and T gives

7 1
IJ-=EF [I—E(ﬂEF)Z+"':|. (724)

To order (kgT/Ef)* the chemical potential and the Fermi energy are the same. The
internal energy per unit volume. u = U/V. becomes

1 2m 32 5/2 57'1'2 kBT £
w=isl) Flrwin) =) PR

The specific heat (at constant volume) per unit volume is

21,2

32 1/2,9 ks
) EF/'kgT = —331p(Ep)T =T. (7.26)

Cy

_Ou 1 (2m
TAT T 6\
[The significance of the quantity p(Eyr) = 3n/2Ef is discussed in Section 7.7.] Thus
for metals there is an electronic contribution to the specific heat which is linear in T
for kgT <« Ef. This is in addition to the lattice contribution discussed in Sections 5.5
and 5.6. The net result is that at low temperatures (7 < 10 K) in metals,

¢, = yT + AT (7.27)

A simple way of understanding the linear behavior is to recognize that most of the electrons
in the Fermi sea cannot be thermally excited, since the states above them are occupied.
Only those electrons within an energy band of width = kpT near the Fermi energy are
capable of being excited to vacant states (see Fig. 7.3). Their number per unit volume is
approximately kg7 (dn /0E)|g. = 3nkgT /2EF. The typical excitation of electrons from
these states will also be of order k3T so the electronic contribution to the internal energy
has a term varying as (kgT)?, and hence one obtains a linear specific heat.

An example of the low-T specific heat of a metal is presented in Fig. 7.4 for Ag.
The measured value of y is approximately 10% larger than the free-electron prediction.

0.20 T

Cy 2
= kg K
o
o

0 !
0 50 100

TAK?)

Figure 7.4. Ratio ¢,/T plotted as a function of 77 for Ag. (Data from CRC Handbook of
Chemistry and Physics, 66th ed., R. C. Weast, ed., Boca Raton, Fla., 1985.)
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This can be attributed to an enhancement of the free-electron mass due to interactions
of the electron with the lattice and other electrons.

TRANSPORT THEORY

The description of conductivity in the Sommerfeld theory is facilitated by studying the
motion of a collection of electrons in phase space, a six-dimensional space constructed
from the three spatial and three momentum variables. The Boltzmann equation provides
an alternative formulation for Newton's equations of motion used in Section 7.2. It also
provides a framework in which other transport phenomena, such as thermal conduc-
tivity, may be studied. Details are presented in Section W7.1.

7.5 Onsager Relations

One may show that both an clectric field Ey and a thermal gradient can produce an
electric current density J and a heat current density Jo:

i =By —aSVT, (1.28)
Jo = 0STEq — K'VT, (7.29)

These are the Onsager relations.
Integral expressions for the parameters are given in Section W7.1 and lead to

o BETER) (7.30)

In[E> 2 2(E)|E=pes (7.31)

e OE
where 7(E) is the collision time for electrons with energy E and

(7.32)

The parameter o is the same as encountered in the Drude theory for the electrical
conductivity, except that T(E) is evaluated at the Fermi energy. Indeed, when T is
constant, Eq. (7.28) reduces to Ohm’s law, J = oE. The electron mean free path
is defined by A = vrT(EF) indicating that carriers at the Fermi energy dominate the
electrical conductivity. Typically, vp is much larger than the drift velocity by many
orders of magnitude.

The parameter S is called the thermopower. When a thermal gradient is estab-
lished in a material and there is no flow of current, J = 0, Eq. (7.28) predicts that a

thermoelectric field is induced. given by

Ey = SVT. (7.33)

Equation (7.31) shows that the thermopower increases linearly in the absolute temper-
ature. For metals typical values of S are on the order of 1 uV/K at room temperature.
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The thermopower can be an order of magnitude larger in transition metals. due to the
contribution of d electrons to the conduction process. The sign and magnitude of S in
a given metal are very sensitive to deviations from free-electron behavior.

The parameter ' is related to the thermal conductivity, and Eq. (7.32) is known as
the Wiedemann—Franz law. When no electrical current flows, Egs. (7.28) and (7.29)
may be combined to give

Jo = (68*T — k')VT = —«VT (7.34)

where « is the thermal conductivity. To a good approximation, «" & k. Equation (7.34)
is Fourier’s heat conduction formula. Equation (7.32) shows that the thermal conduc-
tivity grows linearly with 7" at low 7. It also demonstrates why good electrical conduc-
tors will also be good thermal conductors. The same electrons responsible for trans-
porting electrical charge also tranport thermal energy. The ratio L = x/oT = n°k3/3e*
called the Lorenz number, depends only on fundamental constants. Its numerical value
is 2.44 x 107 W . Q/K>. The experimental values of L at T = 273 K for (Li. Na, K.
Rb, Al, Ag, Au) are (2.22, 2.12, 2.23, 2.42, 2.14, 2.31, 2.32) x 10~% W . Q/K?2, in
reasonable agreement with theoretical prediction.

For metals the thermal conductivity grows linearly with 7 at low 7, peaks at inter-
mediate 7', and falls off at high 7. The falloff at high T is due largely to the shortened
mean free path of the electrons due to electron—phonon scattering.

THE QUANTUM THEORY OF SOLIDS

In going beyond the Sommerfeld theory one attempts to describe all aspects of a solid
in quantum-mechanical terms. The scattering from the lattice ions must be treated
properly. The wave character of the electrons inevitably leads to interference effects,
since typical wavelengths of the electrons are on the order of the Fermi wavelength,
Aip =2m/kr and are comparable to interatomic spacings. In crystalline solids the
ordered array of ions can produce Bragg diffraction effects, which block the prop-
agation of electrons in certain directions and/or with certain ranges of energies. In the
following sections the quantum theory of solids is developed.

7.6 Bloch’s Theorem

The treatment of a many-particle system such as a solid requires that a number of
simplifying approximations be made before a concise mathematical description is
possible. One begins with the independent-electron approximation, where it is assumed
that each electron interacts with a potential V(r). This potential includes the effect
of the ion cores as well as the other electrons in the solid. The result is that one
need only solve a one-electron Schrodinger equation to find a set of eigenvalues and
eigenfunctions.

In this section attention is focused on the solution of the Schrédinger equation for
a periodic solid, where the potential has translation symmetry

Vir+R)=V(r), (7.35)
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where the set of vectors {R) defines the Bravais lattice. Fourier-analyzing V(r) gives

V) =) Vge'®T, (7.36)
G

where {G} are the reciprocal lattice vectors. The reality of V (r) requires that the Fourier
coefficients satisfy the “reality condition” V§; = V_g, since

V=) Vi =Y Mo =Vm)=) V™. (7.37)
G G G

The periodicity of V(r) is obvious:

VIr+R)= ) Vae® R =% vt = vir), (7.38)
G G

where exp(iG « R) = 1 has been used.
The Schrodinger equation is

2

[H — Ely(r) = [_%vz + V() — E] U(r) = 0. (7.39)

Note that H is unchanged if a translation through vector R is made. The wavefunction
¥(r 4+ R) satisfies the same equation that ¥(r) does, and so differs from it by at most
a constant, that is,

¥(r 4+ R) = r¥/(r). (7.40)

The quantity Tgr must have magnitude 1. If it were greater than 1, repeated translations
would make the wavefunction grow in magnitude in an exponential fashion, that is,

¥(r+NR) = ()" ¥(r), (7.41)
and it would not be possible to normalize the wavefunction in the infinite solid limit.

Similarly, if the modulus were less than 1, ¥(r — NR) would not be normalizable as
N — o00. Thus g = exp(ifr) with 6 real. By compounding translations, one has

TR, TR; = TR +R:» (7.42)

9R| + GR: = 0R|+R;n (7.43)
which is satisfied by #g = k + R with k being a real vector. Thus
w(r+R) = e*Ry(r).

The function defined by .
u(r) = e Ty (r)
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is seen to be a periodic function, since
u(r +R) = e * TRy (r 4 R) = ¢ R ERIGER Yy 1) — 4(r). (7.46)
Enlarging the notation, Bloch's theorem states that the solution of the Schridinger

equation may be factored into a plane wave multiplied by a periodic function wu(r)
with the Bravais lattice periodicity:

Yi(r) = e Tuy(r). (7.47)
The acceptable values of k may be determined by imposing periodic boundary condi-

tions (see Section 5.1). For a solid of size N by N2 by N3 atoms, a translation through
N1u; should leave the wavefunction unchanged. Thus

MmN — (7.48)

which has N; independent solutions of the form

k=2lg, j1=01,... N—1, (7.49)
N,

where g; + u; = 27. More generally,

J1 J2 J3 ”
= = == —83 »=01....N,—1, 7.50
k N181+N2g2+N3g3 Jn , (7.50)

where {g;} are the primitive reciprocal lattice vectors [see Eq. (3.8).] Thus K is a point
in the first Brillouin zone. The total number of such points is N = N|N2N3, which is

the number of lattice cells in the crystal.
Due to the periodicity of uy(r) it may be expanded as a Fourier series:

ug(r) = Z ug (k)e'®r. (7.51)
G

Inserting this into the Schrédinger equation gives

n s G r (G-
[-EV + %: Vge ST —E ZG: ug(k)e' r=0. (7.52)
Using
> Veuge €8T =" Voug_ge'®T, (7.53)
GG GG’

this may be simplified to

1 5
[’—(k +G)y — E] u(k)+ Y Veug_g (k) =0, (7.54)
2m )
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where use has been made of the linear independence of the functions exp(iG + r)
in removing the G sum. This infinite set of coupled linear algebraic equations for
{ug(k)} may have many solutions. so the notation is expanded to {u, c(K)}. where
n=1,223,...is called the band-index. The energy eigenvalues will also be labeled
by this index, E, (k). The relations in Eq. (7.54) are referred to as Bloch's difference
equations.

The condition for nontrivial solutions to Eq. (7.54) to exist is the vanishing of the
determinant (called the Hill determinant):

n’ 5
[’:Tn (k + G) — E] 3(;‘(;'-' +Vg_g'| = 0. (7.55)

The roots of this equation determine the eigenvalue spectrum {E,(k)}. This spectrum is
invariant under the transformation k — k + K, where K is a reciprocal lattice vector.
Making this substitution into the Hill determinant and letting G' = G+ K and G" =
K' — K yields

r'z N2
N \:Zz—m(k.*. G — Ei\ S¢x +Ve-x|=0. (7.56)

The condition remains invariant under the transformation above. Hence the first Bril-
louin zone contains the entire energy spectrum. Other Brillouin zones simply contain
replicas of this spectrum.

Truncating the Hill determinant by employing a finite set of G vectors and solving
the resulting secular determinant for the roots E = E, (k) provides a method, in prin-
ciple, for calculating band structures. Since the Fourier coefficients V¢ fall off with
increasing G for large G, the energy eigenvalue spectrum will converge as the size
of the determinant is increased. More practical methods exist, such as the Green's
function [Korringa, Kohn, and Rostoker (KKR)] method. the augmented plane wave
(APW) method, and the pseudopotential method., but these are beyond the scope of the
present book. The books by Fletcher (1971) and Ashcroft and Mermin (1976) provide
good introductions to modern band-structure computation techniques.

Figure 7.5 presents the results of an electronic band-structure calculation for
diamond along various directions in the first Brillouin zone. The lowest band
corresponds to n = 1, the next higher band to n = 2. and so on. One sees that there are
two degenerate conduction bands and three degenerate valence bands at the T" point.
Diamond is an insulator. The Fermi level lies at midgap, so all states with E <0
comprise the valence bands and are occupied. The conduction bands are empty. The
bottom of the conduction band does not occur at the I' point but rather, along the [100]
direction. The bandgap is close to 6 eV, making diamond transparent to visible light.

7.7 Nearly Free Electron Approximation

In analyzing some metals the free-electron approximation forms a suitable starting
point for explaining the band structure. In these materials the ion cores are largely
screened by the valence electrons, leaving behind a weak potential that may be treated
using perturbation theory. Examples of such materials are the alkali metals (Li, Na, K,
Rb. Cs). Mg, and Al.
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Figure 7.5. Electron band-structure calculation for diamond. [From J. R. Chelikowsky et al,
Phys. Rev. B, 29, 3470 (1984). Copyright 1984 by the American Physical Society.]

Begin with Bloch’s difference equation [see Eq. (7.54)],

(eksc — Eug (k) + ) Veug—c(k) =0, (7.57)
e

where a free-electron kinetic energy is defined by

~

h* )
ek = > —(k+G)~. (7.58)
2m
In the case where the {V} all vanish, the solutions are

E= Ek+G- (759)

[n the extended-zone scheme the energy dispersion curve is a single parabola of revo-
lution. In the reduced-zone scheme the information gets compressed into the first
Brillouin zone (e.g., —m/a < k < m/a for the one-dimensional case). In the periodic-
zone scheme the information is repeated periodically in each Brillouin zone. Five
parabolas are illustrated in the respective schemes in Fig. 7.6.

There is one case for which the free-electron approximation fails badly. and that
is when energy bands intersect each other. At such degeneracies any perturbation
will have a large effect. To see this in detail. suppose that the bands described by
reciprocal lattice vectors G| and G» cross each other. An example of this is seen
m the periodic-zone scheme in Fig. 7.6. The one-dimensional bands with G = 0 and
G = 2x/a intersect at k = m/a. Other couplings beside those between the two bands
are neglected. Thus Eq. (7.57) becomes a pair of equations,

(ex+G, + Vo — E)ug, + Vg, -g.ltg, =0, (7.60a)
(ek+G, + Vo — Eug, + Vg,—g,ug, = 0. (7.60b)
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Figure 7.6. Free-electron bands in the () periodic, (b) reduced. and (c) extended-zone schemes.
The first Brillouin zone extends from —m/a to w/a.
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Here V describes a uniform background potential. The condition for the existence of
solutions for this pair of linear equations is the vanishing of the secular determinant

&+, +Vo—E Y66, =0 7.61
VEI_G: &+, +Vo—E . (181>
yielding
E® — E(ex4G, + £k4G, +2V0) + (ekt6, + Vo)(Eksa, + Vo) — [V, —6,]2 =0,
(7.62)
where Vg,-g, = V§,_g, has been used. The two roots are
[ 2
Es= Vot 2O TG, \/ (8'”“’ ;8"+G‘*) +IVe el (1.63)
At the point of degeneracy the two &y factors are equal and
E.=V, +€R+Gx =+ 'VG,_(;ZI. (7.64)
The condition for the equality of the free-electron energies reduces to
Gi+2k-G, =G3+2kG,. (7.65)

This is precisely the von Laue condition for Bragg scattering of an electron. An energy
gap is opened up between the two branches of the dispersion curve equal to twice the
strength of the Fourier coefficient of the potential at that reciprocal lattice vector:

E,=AE=E, —E_=2|Vg,_g,| (7.66)

Typical graphs for the two branches of the dispersion curves are presented in Fig. 7.7
in the reduced-zone scheme.

As in the case of phonons, the spectral properties of the electronic states of a solid
may be represented by the density of states, p(E). the number of states per unit volume

Figure 7.7. Typical dispersion curves for electrons in two interacting bands in the reduced-zone
scheme.
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per unit energy interval. It is defined by

1 dik
pE) =7 "Z“a(E — B )= 22ﬂj (—2;);802 — Eng); (1.67)

where d is the dimensionality of the solid and the sum extends over both electron
spin projections, s, and the band index. n. For nonmagnetic materials the energy is
independent of s. The k integration is limited to the first Brillouin zone. Note that p(E)
is a function of the form of the energy dispersion curves as well as the dimensionality
of the solid. The quantity V is the crystal volume in three dimensions, area in two
dimensions and length in one dimension.

For the one-dimensional free-electron gas one may use an extended-zone scheme
and simply write

* dk k3 1 [2m
p(E)=2 n 5%5 <E— z»:) = ;ﬁ\/?@(s). (7.68)

where ©(E) is the unit step function. There is a threshold at E = 0 and an inverse-
square-root behavior for E > 0. Note that for energies sufficiently far from the band
edge. the limits of the k integration may be set to infinity. The corresponding result
for a two-dimensional free-electron gas is

© d%k nk? m
P(E) — 2-/:‘0‘: W& (E - m ) = ;F@(E), (769)

which has a threshold at E = 0 and is then constant for E > 0. For three dimensions
the density of states is

&’k n2k?
P‘E)=2/(27>35 (E‘ zm>

1 (Edk , nk? 1 2m\*?
~ [ s (E e ) Al (r—'f> VEO(E), (1.70)
%

s o dE 2m 27?2

and the density of states grows as JVE above the threshold at E = 0. Extending these
results to the nearly free-electron model results in the introduction of van Hove singu-
larities, which may occur at the zone boundaries or at any other extremal point of the
energy band spectrum.

7.8 Tight-Binding Approximation in One Dimension

When an electron is bound in a deep-enough attractive potential well, the low-lying
spectrum is a set of discrete energy levels. This is in contrast to the free-electron
case. where the spectrum is a continuum. Just as the nearly free electron description
of a solid in Section 7.7 was built around the free-electron model, it is possible to
take as a starting point a solid treated as a collection of bound electrons. This is the
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idea behind the tight-binding approximation. We begin this section by reviewing the
Hiickel approximation from molecular physics. The approximation is then extended to
a periodic solid.

The interaction of two atoms to form a molecule is most simply described in terms of
the Hiickel approximation. Molecular orbitals are constructed as a linear combination
of atomic orbitals. A model Hamiltonian is introduced in which the atomic properties
and the interaction between any pairs of atoms are parametrized in terms of numbers.
Thus, for a two-atom situation, with one relevant state on each atom, the electronic
states are denoted by |1) and |2) respectively. and the molecular wavefunction is written
as a linear combination of these states

V) = ai|l) + a2|2). (7.71)

The on-site matrix elements of the Hamiltonian are (1|H|1) = ¢ and (2|H|2) = &,
These are the energies of the electronic states of the individual atoms. The off-diagonal
matrix elements, or runneling (or hopping) matrix elements, are (1|H|2) =1 and
(2|H|1) = t*. They come about because the Coulomb interaction has matrix elements
connecting the states on different atoms. The Hamiltonian matrix is

_l&
Hi= [t* 82} . (7.72)
Note that H defines a Hermitian matrix (i.e., one whose transpose and complex
conjugate have identical matrix elements). It is convenient to neglect the direct overlap
of states [1) and |2) and assume the orthonormality condition (i|j) = &;;. This implies
the normalization condition |a;|* + |a2|*> = 1. The eigenfunctions and eigenvalues
are determined from the Schrédinger equation (H — E)|y) = 0, which leads to the
following pair of equations:

(e —E)a; +17a, =0, (7.73a)
tay + (2 — E)ar = 0. (7.73b)

The secular determinant vanishes. so

E*—E(e1+ &) +ee— 1P =0, (7.74)
with the solutions
2
Ey=2 *2'82 + \/(e‘ - e2> + 1. (7.75)

Here E_ is the energy of the bonding state and £ is that of the antibonding state of
the molecule.

This result is readily generalized to a chain of N atoms. For finite N it may represent
a linear polymer. In the limit of large N it may be thought of as a one-dimensional
solid. Thus

N
W) =" ajlij). (7.76)
i=l
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In the simplest case, one makes the assumption of NN interactions only. The nonvan-
ishing matrix elements of H are then

(JIH|j) =€}, (J+ 1H|j) =1, (jIH|j+ 1) =1]. (1.77)
Periodic boundary conditions, introduced in Section 5.1, are imposed, so there is the

subscript identification N 4+ 1 — 1 and 0 — N. The Schrédinger equation leads to a
set of N coupled linear algebraic equations:

(sj—E)aj+rj_1a,-_1 +t}‘aj+1 =0. (7.78)

In the case where all the atoms are identical, £, =& and 1; =1, for all j. Let
a; = Ac’, so that

t
£—E+;+t*c=0. (7.79)

As in Section 7.6, it is found that the quantity ¢ must be of modulus 1, so ¢ = exp(if).
It is convenient to assume 7 to be real. Then

e—E +2tcosé =0. (7.80)

Imposing the periodic boundary conditions ay4+ = a; implies that exp(iN@) = 1. so
that 6 = 27n /N, where n =0, 1,2,..., N — 1. Letting k, = 27n/Na, where a is the
lattice constant, and suppressing the subscript n leads to the dispersion curve:

E(k) = & + 2t cos ka. (7.81)

Thus one finds a single allowed energy band of width 4|¢|. Depending on the sign of
t, it could have a maximum or a minimum at k = 0. The allowed values of k extend
over the first Brillouin zone, from k = —/a to m/a. For core levels it is safe to assume
that ¢t = 0, so there is no overlap or interaction.

For 7 < 0 there is a minimum at k = 0, and for small k it follows that

- nek?
Exg=2t|+ |tlak = Eo+ .
2m*

where Eg = ¢ — 2|t| and m* denotes the effective mass of an electron,

T 2|tla*

*

m (7.83)

The inverse of m* is proportional to the curvature of the energy dispersion curve at
k = 0. One may define in a similar way the effective mass for the case in which there
is a maximum at k = 0. In that case m* will be negative. Equation (7.82) predicts
that as m* — oc, the energy E will be independent of k. The tight-binding bands are
sketched in Fig. 7.8 for the cases r > O and 7 < 0.

The tight-binding approximation finds application in the description of semicon-
ductors and the d bands of transition metals. It is also of use in finding the band
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Figure 7.8. Tight-binding bands for the cases r > 0 and < 0 in the reduced-zone scheme.

structure of polymers. It may be generalized to higher dimensions, to more than just
NN interactions, and to the case where there is more than one state per site.

The density of states for the one-dimensional tight-binding model is obtained from
Eq. (7.67) by integrating over the first Brillouin zone:

w/a 2 - I 2
p(E) = 2/ ﬁcS(E —¢&—2tcoska) = 2Bt —IE —8) ]. (7.84)

—xja 27 wa\/4t2 — (E — ¢)?

This gives a diverging density of states at the upper and lower band edges, E = & + 2¢
at k = 0 and at k = £/a. The density of states for a random one-dimensional solid
is discussed briefly in Section W7.2.

7.9 Tight-Binding Approximation in Two Dimensions

The tight-binding approximation will now be applied to calculation of the band structure
of a two-dimensional crystal: a CuO, plane. As discussed in Chapter 11, these planes of
atoms play a central role in the structure of ceramic high-temperature superconductors.
Assume that there is a square lattice with three atoms per unit cell: a copper atom, an
oxygen to the right of it (in the x direction), and an oxygen above it (in the y direction).
The dsp® orbitals from the copper atoms interact with the px and p, orbitals of the
oxygen atoms to form bonds (Fig. 7.9). These bonds have mixed ionic and covalent
character.

Let the amplitude of the wavefunction on the copper atom in cell (m. n) be denoted
by Ay, and the corresponding amplitudes of the two oxygen atoms of the cell by R
and U,,,. respectively. The tight-binding equations are

m,n

(Ecuy — E)Ap.n + tRon + Uppn + Rm—l.n + Upp-1) =0, (7.85a)
(EO i E)Rm.n -t 1(Am+l.n + Am,n) =0, (785b)
(Eo —E)Up + tHApn +Amant1) =0, (7.85¢)

where Ec, and Eg are the on-site electron energies and 7 is the tunneling matrix element
between the Cu and O atoms. Inserting the expressions

Am.n =Aei(mkx+nk‘ la' Rm.n . Reilmk,ﬁ-nk_‘ )av Um.n s Uel(lllk_r-i'llk}-)ﬂ' (7.86)
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m,n+1 1

ole

Figure 7.9. Copper atoms (solid circles) bonded to oxygen atoms (open circles) in the CuO;
plane. The square unit cell is shown. The hybrid dsp>-Cu orbitals combine with the p.- and

p,-O orbitals to form o-molecular orbitals.

where a is the lattice constant, leads to

(Ecu — E)A + tR(1 + e~ %) 4+ 1tU(1 + e ™) =0,

1A ;
R= 1 ik.a ;
E-Eo( +e™)

tA
U= 1 lkya.
E—Eo( + ™)

The resulting secular equation is
% ) 9 2 kxa - kya
E- —(Eo+ Ecu)E + EoEcy — 41- | cos T -+ CcOos” ? =0.

The two solutions are

Ecu+E Ecu—Eo\? k ;
Es(ky, ky) = —C%—oi | (-CLZ——") +4r (cosZ%a-l-cosz 5;) (7.91)

The first Brillouin zone is a square occupying the space |k;| < m/a. |ky| < T/a.
Along the line k, + ky = 7/a, the energy is constant and has the value

2
Ei= 5:%@ 4 \@;ﬁ> +4r2, (7.92)

which is independent of k. The shape of the Fermi boundary is determined by the
electron density in the plane, a factor that is often controlled by the nature of other
atoms above or below the planes. For example, a half-filled energy band has all the
states within the square defined by |k; + ky| < /a and |ky — ky| < m/a occupied at
T = 0 K. Several lines of constant energy are sketched in Fig. 7.10. Note that the
free-electron model works well when k, and k, are near the zone center and the

constant-energy contour is a circle.
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Figure 7.10. Lines of constant energy for the lower energy band in Eq. (7.91) for a typical
case.

It is of some value to relate the bandwidth in the tight-binding approximation to the
number of NNs in a lattice. The Schrodinger equation is of the form

V4
(Eg— E)Ag+1) Ay =0, (7.93)

n=1

where A denotes the amplitude on a given site and A, are the amplitudes on the Z
neighboring sites. The latter amplitudes are related to A through simple phase factors.
At some points in the Brillouin zone all these phases are equal to 1 and the sum is
maximized so that E = Eg + Zt. On the other hand, at other points the sum equals —1
and is therefore minimized. Then E = Ey — Zt. The bandwidth is therefore given by

B'=2Zt. (7.94)

For fixed 1, the larger the number of NNs, the larger the bandwidth.

7.10 Metals, Insulators, Semiconductors, and Semimetals

The energy-band picture provides a simple understanding for the wide variation in
conductivity in going from material to material, at least for the case of crystalline
solids. In a meral the Fermi level lies within an allowed energy band. There are
unoccupied states with energies immediately above the Fermi energy and there are
occupied states immediately below it. The application of even a weak electric field can
elevate an electron in energy from an occupied state to a vacant state, where it can
participate in the flow of a net current. In metals the concentration of charge carriers is
essentially constant, independent of T, and determined by the atomic concentration and
the valence of the ion. Referring to the Drude formula o = ne’z/m, the temperature
variation of the conductivity may be understood. As the temperature of the material
increases, o decreases. due to the shortening of the collision time brought about by the
emission, absorption, and scattering of phonons.
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In an ideal insulator the Fermi level lies within an energy gap. All energy bands are
either completely filled with electrons or completely vacant. (This is never true in real
materials, due to defects, impurities, etc.). Since the number of states (with a given spin
projection) in an energy band equals the number of unit cells in the crystal, a necessary
condition for an insulator is that there be an even number of electrons per unit cell.
This, however, is not a sufficient condition. For example, divalent Mg is a metal due to
band overlap in different directions in k space. The occupied bands are called valence
bands, and the unoccupied bands are called conduction bands. When a weak electric
field is applied, there is no electric current in the filled bands since these electrons
cannot be excited. The field is unable to provide the energy needed for making an
interband transition to a conduction band. At finite temperatures, thermal excitation of
electrons from the valence to the conduction bands is possible. The conductivity will
be determined largely by the number of carriers produced. For wide-bandgap materials,
this number will be very small. Free charge trapped in an insulator can remain there
for very long periods of time without being conducted away, because of the very high
electrical resistance. This forms the basis of solid-state CMOS memory devices, where
a bit of information corresponds to a stored electric charge.

An intrinsic semiconductor is an insulator with a relatively small bandgap. Examples
of elemental semiconductors include Ge and Si. For such materials thermal excitation
of carriers is nonnegligible at room temperature. As the temperature rises the number
of thermally generated carriers grows exponentially and the conductivity also increases
exponentially. This effect more than offsets the shortening of the collision lifetime due
to phonon interactions.

The conductivities of insulators and semiconductors are highly sensitive to the pres-
ence of impurities. Impure semiconductors are called extrinsic semiconductors: if the
impurities are introduced in a controlled fashion, they are termed doped semicon-
ductors. Semiconductors are discussed in detail in Section 7.12 and Chapter 11. The
question of conduction in impure materials is considered later in this chapter.

Semimetals have a slight overlap between the valence and conduction bands. As a

result, the valence band is nearly filled and the conduction band is nearly empty. The
electrons in the conduction band can carry an electric current, as can the vacant electron
states (holes) in the valence band. Examples of elemental semimetals are graphite, As,
Bi, and Sb.

In Fig. 7.11 hypothetical band structures are sketched for a metal, an insulator (or
semiconductor), and a semimetal.

(@)

Figure 7.11. Hypothetical band structures for (a) a metal. (b) an insulator, and (c) a semimetal.
The dashed line denotes the Fermi level. The heavy lines represent occupied states.
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In the following section the temperature dependence of resistivity is analyzed and we
will see that quantum-mechanical effects need to be introduced to describe the low-T
resistivity. Then the Hall effect is reexamined from the vantage point of electron band
theory in Section W7.4.

7.11 Temperature Dependence of Resistivity in Metals

Resistivity is defined as the inverse of conductivity: p = 1/o. It has been seen that
conductivity is determined by the average collision time, 7. A collision is any process
that destroys the forward momentum of electrons. It may involve scattering from
impurities or defects (time t;), or it may result from the emission or absorption of
phonons or the scattering from phonons (time 7). Since one may write the total
scattering rate as the sum of the individual scattering rates, the resistivities will be

additive: ; :
== (— + —> . (7.95)
ne* \t Tt

This separation, called Matthiessen’s rule, is an approximation. The value of 7; is
controlled by the quality of the material and is essentially independent of the temper-
ature, at least at low 7. For a perfect material with no impurities (chemical or even
isotopic) 7; can be made arbitrarily long. The scattering time 7, depends on the temper-
ature. In Fig. 7.12 data are presented on the variation of resistivity with temperature
for aluminum.

Temperature dependence displays approximately linear behavior for T > ®p. This
may be understood simply in terms of the thermal occupancy of phonon modes in this
temperature range. The Bose—Einstein distribution function for phiw < 1 becomes

1 kgT
n(w,T):e ~ B

—_ & —, 7.96
Biw — 1 hw ( )

so the number of phonons available (to be absorbed, to stimulate an emission process,
or to scatter from) is linearly proportional to the temperature. These processes are

logyp[€2m]

10g40T[K]

Figure 7.12. Plot of resistivity (in 2:m) of Al versus temperature (in kelvin) on a log-log plot.
The Debye temperature is denoted by ©p = 428 K. Note that Al melts at 7 = 934 K. (Data
from D. R. Lide, ed., CRC Handbook of Chemistry and Physics, 73rd ed.. CRC Press. Boca
Raton, Fla., 1991.)
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likely to involve phonons with wave vectors anywhere in the Brillouin zone. The emis-
sion/absorption/scattering rate is proportional to the phonon mode occupancy, hence
the linear behavior at high 7.

At low temperatures, however, note that there is a range in which p oc T°. This
comes about because of three effects. First, at low temperatures only low-energy
phonons (with energies of approximately k) can be absorbed. The phonon density of
states grows quadratically with energy. so this introduces a factor proportional to T
Second, emission or absorption of these “soft” phonons are likely to result in only small
deflections, and hence are not very effective in randomizing the electron’s momentum
direction. If @ is the scattering angle, the forward momentum will be reduced by the
factor 1 — cos6 ~ 6%/2. But 8 o k/p, where k and p/h are the wave vectors of the
phonon and electron, respectively. This introduces an additional k> factor. Since @ and
k are proportional for acoustic phonons and for a typical phonon @ o T, one obtains
an additional 72 factor. The final factor of T arises from the behavior of the elec-
tron—phonon coupling constant. For example, in the deformation-potential interaction
the phonon produces a transitory dilation or compression of the lattice. This, in turn,
causes the energy bands to be shifted up or down locally and results in the conduction
electron’s wavefunction acquiring a phase shift. The result is that the electrons are
scattered. The degree of dilation is measured by V - u, u being the local displacement
vector. Upon Fourier analysis this leads to a factor k - u, and hence an additional T
factor. The net result is the Bloch T3 law for the resistivity. Other electron—phonon
mechanisms produce a similar factor.

At very low temperatures (but above 7' = 1.18 K) one sees in Fig. 7.12 the residual
effects of impurity scattering, and the resistivity tends to a constant value. Below
T = 1.18 K the resistivity falls abruptly to zero. This is due to the onset of supercon-
ductivity, which is described in Chapter 16.

7.12 Semiconductors

Crystalline solids are characterized by the existence of allowed and forbidden electron
energy bands. The distinction between insulators and semiconductors resides in the
size of the bandgap and where the Fermi level sits relative to the band edges. In an
insulator the Fermi level lies within a wide forbidden band, considerably removed from
the filled valence band and the vacant conduction band. The gap is sufficiently wide
that a typical applied electric field is unable to excite interband transitions, even if
assisted by thermal fluctuations. (Very strong fields can lead to breakdown, however,
due to interband tunneling.) In semiconductors there is generally a narrower gap. Two
cases are distinguished: intrinsic and extrinsic. In the intrinsic case, the semiconductor
is of high purity and has few defects. There are some thermally excited electrons that
reside in the conduction band, and these leave behind holes in the valence band. These
electrons and holes are each able to conduct an electrical current. In the extrinsic case,
dopant atoms are added to the semiconductor, which may become thermally ionized
and contribute either electrons to the conduction band or holes to the valence band.
The dynamics of carriers (electrons or holes) is often described in the semiclassical
approximation by equations resembling the Hamilton equations of classical mechanics

d
h;}: = —e(E+v, xB), (7.97)
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19
Vo =g akE"(k). (7.98)
Each electron is assumed to reside in a particular band (fixed n), and interband transi-
tions are neglected. This assumption puts an upper limit on the strength of the applied
fields and the frequency at which they can change. Unlike the Hamilton equations, ik
is the crystal momentum (not the true momentum). Recalling that the energy bands
are periodic functions in k space, k is effectively confined to the first Brillouin zone.
Its value evolves under the influence of the Lorentz force.

Consider the case of an electron in a conduction band. Let E, denote the minimum
energy in the conduction band and assume that it occurs at the points k = k", v =
l,....,N,. If N, =1, there is a unique minimum, whereas if N, > 1, there is a
degeneracy and the corresponding valleys are probably linked by a crystal-symmetry
operation. In the neighborhood of the minimum of the energy band at k = k" (where
VkE, (k) = 0), one may expand the energy surface

L P E
(K)=E.+ = kl._.k}’ ; = n
E,(k)=E. + 2;( )k k’)ak,-akj +
i i Bl .
sk —Gk—E)y— Gk=K)4-, (7.99)
2 m:
where .
1 1 &E,
W) mn 100
(%:>i,- 1 ok;ok (7.100)

is called the inverse of the effective-mass tensor for the electrons.

In general, 77} is a symmetric matrix. It is positive definite since there is an abso-
lute minimum in the band. The tensor may be diagonalized by an orthogonal matrix
R. This means that there exists a matrix R such that R#iiR™" is a diagonal matrix.
An orthogonal matrix is one whose transpose and inverse are the same. In the diag-
onal representation the mass eigenvalues are m7, m3, and mj. In the case of twofold
degeneracy, one sometimes writes m} = m3 = m" (or m}, the transverse mass) and
my = my (or mj, the longitudinal mass). The semiclassical equations for electrons may
be written as

L

i o = —e(E+v, xB). (7.101)

In the case of the valence band, the maximum energy is denoted by E, and the
expansion of the energy surface around E, leads to the introduction of a mass tensor
defined with a negative sign:

1 1 9%E,
— | === . 7.102
(m;;),.j n* ok;ok; ( )

The equation for the holes in the valence band is

dvy
iy, - d—,’ = +e(E + v, x B). (7.103)
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Because of the downward curvature of the valence band, they behave effectively as if
they had a positive charge.

The dynamical equations (7.101) and (7.103) for the velocity describe the motion
of individual carriers in a band. They may be averaged over the band, however, and
may then equally describe the motion of the average velocity of the carrier. One may
introduce the effect of collisions phenomenologically, by means of a collision time
matrix. The reason for introducing this quantity as a matrix is to take account of the
possible anisotropy in the collision rates. Thus

s - (%"Te + L . ve> =—e(E+v, xB), (7.104a)

iy, - ) = +e(E+ v, x B). (7.104b)

In the absence of a magnetic field and for steady-state conditions, the electrical
current may be written as
J=6E, (7.105)

where the conductivity tensor is described in terms of contributions of electrons and
holes by
1 1
G = ez <n;,?/, Ty +’zg?g 3 ;—*) . (7106)
my m;

(]

Here n;, and n, are the hole and electron concentrations, respectively.

7.13 Magnetoresistance

The Drude theory may be used to obtain a simple understanding of magnetoresistance
(i.e., the effect of a magnetic field on the conductivity). Begin with the metallic case,
where there is only one band, and then extend the analysis to semiconductors, where
two or more bands may be involved. The equation of motion includes the magnetic
force in addition to the electric force:

d
2 4lacZ BevxB) (7.107)
dt t m*

Take the magnetic field to be along the z direction and introduce the cyclotron frequency
w, = eB/m*. In the absence of an electric field the electrons would move in cyclotron
orbits, which are either planar circles or helices whose axes are along the direction of
the magnetic field (z direction). The period around the circular orbit (or one turn of a
helical orbit) is given by 2m/w,. In the presence of an electric field one may explore
the solutions of Eq. (7.107) for the case in which the damping term dominates over
the inertial term. This leads to the expressions

et

Uy + WeTUy = Eoes (7.108a)

m"
Uy — Ty = —:—tE\.. (7.108b)
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m
Use J = nev to obtain
E, —w.tE,
L g Gty oEys 109
2 a l e (wct)2 axxE.t + a, yEy (7 a)
E. 4+ w.tE,
= = »Et .E-, 1096
J_) o 1+ (wrr)z G).Y 2 +0'_v_\ \ (7 9 )
J: =0E; =0.E., (7.109¢)

where o is the Drude conductivity. If J, = 0. then E, = —w,7E, and J, = oE,. There
is no transverse magnetoresistance in this one-band model. As noted in Section 7.3,
the Hall coefficient is given as Ry = E,/BJ, = —1/ne.

Next consider a semiconductor containing two bands, one with electrons and the
other with holes. Let n, and n;, denote the number of electrons and holes per unit
volume, respectively. Their parameters are (z..m}, o.) and (t4, mj}, 0;). The current
density components are now

E; —w.t.Ey Ey+ wptiEy

Je= % 7.110a
e 1+ (weT.)? o 1 + (wpty)? ( ;
E, +w,1.E, Ey — wymhE;

Jy=0.— : 7.110b

YT @n? T T+ (on)? .

J. = (0, + op)E-. (7.110¢)

For the case where J, = 0 one now finds
Ay — A
7 o= 0w On/ Ay — 0.0,/ eEx. (7.111)

o'h/Ah + 0./ A,

where Q = w.t = uB. where y is the mobility and A = 1 + (w.7)*. This leads to an
expression for the magnetoconductivity:

S [(2 iy ﬁ) 3, (0eQ./De — 04 Qn/ Ap)?
Ae Ap 0o/ Ao + 01/ Ay,

In the limit of very large magnetic fields (i.e., u.B > 1 and ;B > 1), the first
term in Eq. (7.112) becomes small and the B dependence of the second term drops
out. Thus the magnetoconductivity is

E. = ouE;. (7.112)

2
(n, — ny)’e?
nem /T, +npymi )z’

Oy =

(7.113)

This, again, is independent of B (i.e., saturates). The high-field Hall coefficient
approaches
1

Ry =——,
" (n, —ny)e

(7.114)

which displays the competition between electrons and holes in determining its sign.
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In many metals, for example, the noble metals, things are more complicated. The
starting assumption that the electrons are always characterized by a positive mass is
not valid. The Fermi surface is such that it may contain necks connecting different
Brillouin zones. The effective mass tensor then varies in magnitude and sign with
location on the Fermi surface. A mass that varies in sign leads to a curvature of the
orbit that also varies in sign. This leads to the possibility of open orbits instead of closed
orbits perpendicular to the magnetic field. In such a situation the magnetoresistance can
continue to grow with increasing magnetic field instead of saturating as in Eq. (7.113).
The implications of open orbits are not considered further here.

CONDUCTION IN INSULATORS

A perfect insulator would. of course, block the flow of all charge. In practice, however,
insulators do have some residual conductivity. There is always the possibility of acti-
vated conduction by transferring electrons to the conduction band or creating holes
in the valence band. In the intrinsic case, this would require a thermal fluctuation to
create an electron—hole pair, a process that has probability exp(—BE,). For a wide-gap
insulator, this would be negligible. For an insulator with impurity levels in the gap, the
excitation energy need not be as large, but it may still be improbable. In this section it
will be seen that one need not make transitions all the way to the conduction band for
a carrier to move. All that is necessary is for a carrier from an occupied impurity level
in the gap to find a vacant impurity level in the gap so that transitions can occur. The
study of variable-range hopping explores this possibility. In addition, it will be shown
that there is a possibility of nonohmic conduction in insulators, particularly at stronger
electric fields, due to the Poole—Frenkel effect.

7.14 Variable-Range Hopping

Impurity levels in insulators or semiconductors may lie in the energy gap either below
or above the Fermi level. At high temperatures these levels are likely to donate electrons
to the conduction band (or accept electrons from the valence band) and the material
will function as a doped semiconductor. At low temperatures, conduction occurs when
an electron in an occupied impurity state is thermally excited and hops to a vacant
state some distance R away (Fig. 7.13). Let the energy for this excitation be denoted
by AE. The probability for being excited is exp(—BAE). The probability that the
electron will hop a distance R is also proportional to the overlap of the wavefunctions

Figure 7.13. Set of impurity levels lying within the bandgap. Conduction occurs by hopping
processes.
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at the initial and final sites. This falls off exponentially with separation as exp(—2aR).
The parameter « is related to the binding energy Ep of the electron to the impurity

ion (relative to the bottom of the conduction band) by « & \/2mEg/h*. Thus the net
hopping probability contains the factor exp(—BAE — 2aR).

An estimate for AE can be made by assuming an impurity concentration 7, letting
B denote the spread of energy values of impurity levels, and assuming a uniform spread
of levels 8

E= R, (7.115)
Here the denominator represents the total number of impurities within a radius R of
a given impurity. (More generally, one may replace n;/B by the density of states at
the Fermi level.) There is competition between the two terms in the exponent in the
expression for the hopping probability. If BAE > 1, electrons must hop long distances
to find a state of the proper energy. If the hopping distance is to be small. the excitation
energy can be large. This type of conduction is called Mott variable-range hopping.

The maximum hopping probability will be achieved when the magnitude of the
exponent is minimized as a function of R:

8(3,83

— 2a¢R | =0, g
3R \ G, 5 + 2 ) 0 (7.116)

The most probable hopping distance is therefore

1/4
Rmax=< B ) . (7.117)

8mnjo

and the hopping probability and the conductivity are proportional to

1/4
0 = apexp (—-g-aRmx) = op exp {— (%) ] : (7.118)

where T = 512Ba? /97rn kp. Here oy contains more slowly varying factors of temper-
ature. Typical mobilities in a localized state are small.

Efros and Shklovskii introduced modifications to this formula arising from the
Coulomb attraction between an electron that undergoes hopping and the hole it leaves
behind. This changes the 7" dependence of the conductivity. A qualitative derivation of
the effect is presented. The Coulomb interaction energy is AE, = —e*/4meR, where €
is the static dielectric permittivity. Thus there is a minimum distance that an electron
must hop to overcome the Coulomb attraction. For an electron at the Fermi level to
hop to a site a distance R away requires an energy input of amount AE such that
AE + AE, > 0, or else the electron will not reach a state above the Fermi energy.
This leads to a connection between the minimum hopping distance and the energy:

2
e-

(7.119)

R= h
dme AE
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The optimum hopping probability selects a value for AE given by

Fl ae?
9AE (ﬂ Ab+ 2msAE) =0 (7.120)

AE=|2€ (7.121)
T\ 27ep’ '

The conductivity therefore varies with temperature as

o = ogexp (-,/%), (7.122)

where the characteristic temperature is Tgs = 2e®/mekg.

One expects the Efros—Shklovskii form for the temperature dependence to be valid
at the lowest temperatures. At intermediate temperatures the Mott formula is more
suitable. At high temperatures, if the energy is sufficient to excite the impurity electrons
to the conduction band, the material will conduct as a doped semiconductor.

which leads to

7.15 Poole-Frenkel Effect

The conductivity of an insulator is often not independent of the applied electric field
and may be increased considerably by increasing the strength of the applied field.
The long-range interaction of an electron with an impurity ion (with z = 1) in a host
insulating or semiconducting crystal is given by the Coulomb interaction,

2

Uslr) = ——

a— (7.123)

For ionization to occur, the electron must in principle be moved from the ion position
to r = oo, where Uy vanishes. Let 7, denote the ionization potential of the impurity
atom embedded in the host crystal. Now suppose that an electric field E is established
in the crystal parallel to the z direction. The interaction becomes

Ur,8) = —# — eErcos®, (7.124)

where @ is the polar angle that r makes with the z direction. There is a saddle point in
this function at the location

(7.125)

and the value of U there is

(7.126)
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Us u

Figure 7.14. Potential energy without the electric field, Uy, and with the electric field, U.

For ionization to occur, one need only transport the electron to the location of the
saddle point rather than all the way to infinity. The net result is that the ionization
energy is lowered by an amount

3
B E 2 (7.127)
e
The process of lowering the ionization barrier is illustrated in Fig. 7.14.
The ionization probability of the donor impurity, the number of ionized carriers,
and the conductivity are all proportional to the Boltzmann factor exp(—pI,). Hence
the conductivity is enhanced and becomes

1 [&E
o(E) = opexp (kg—T 7 | (7.128)

where oy is the conductivity in the zero-field limit. This is called the Poole—Frenkel
effect. It serves to show that nonohmic conductivity is likely to be important in
describing charge transport in insulators at elevated field strengths. Dielectric break-
down is described in Chapter 15.

METAL-INSULATOR TRANSITION

There are materials that behave as metals for one range of parameters, but behave
as insulators for another range. The separation between these two behaviors is often
very sharp. Changing a physical parameter slightly can cause the material to undergo
a metal—insulator transition. In this section several causes for this will be studied.
The study begins with the phenomenon of percolation. One is concerned with an
inhomogeneous system consisting of isolated conducting clusters (in three dimensions)
or islands (in two dimensions). As their volume fraction increases, eventually they
make contact with each other and the system can conduct electricity. This is followed
by a discussion of the Mott transition, which is appropriate to homogeneous systems.
In Section W7.5 the phenomenon of localization in solids is introduced, with attention
being given to both weak and strong (Anderson) localization.

7.16 Percolation

Classical transport through a random medium may often be idealized by studying
motion on a lattice. There are two conventional ways to introduce randomness: by

N L
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Figure 7.15. Random-bond model for a square lattice for the cases (a) p < p and (b) p > pe.

means of random-site or random-bond occupancy. In the random-site (RS) model, any
site on the lattice is either occupied, with probability p, or vacant, with probability g =
1 — p. If NN sites are occupied, a path (bond) is drawn between these sites: otherwise, it
is omitted. In the random-bond (RB) model, one distributes bonds randomly between all
NN pairs of sites in the lattice, with probability p. In either case, connected clusters of
bonds are formed. The distribution of cluster sizes is determined by the dimensionality
of the lattice, d: the symmetry of the lattice; and the parameter p. If p is less than a
critical probability (p.s for RS, p. for RB), all clusters are finite in size. For p > p,.
(generic for p. or p.,) there exists an infinite cluster spanning the lattice, in which
case one says that percolation has occurred. Electrical conduction, for example, can
occur only if there is percolation. In Fig. 7.15 a sketch is made of the RB model for
prepercolation and percolation conditions on a square lattice. The percolated cluster is
darkened in the figure.

Percolation theory is usually studied by means of simulations on a computer. Some
crude insights into percolation theory can be obtained by studying a simple model
that may be analyzed analytically. This is the tree structure called a modified Bethe
lattice (Fig. 7.16). Each interior site (except the center) has Z nearest neighbors. There

Figure 7.16. Modified Bethe lattice, illustrated for the case Z = 5.
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are no closed loops in this structure. The dotted circles identify levels of increasing
complexity in the lattice. The number of branches in zone n is (Z — 1)". One wishes
to know whether a particle starting at the center of the lattice will find its way to the
outer perimeter by passing through occupied bonds. The main interest is in the limit
asn — o0.

In the case Z = 2, the modified Bethe lattice is simply a single line passing through
all the sites. The probability of reaching the nth level starting at the center is p". This
will vanish as n — o0 for p < 1. For Z = 2, any break in the lattice is sufficient to
prevent percolation.

The average number of paths that connect the center to the perimeter, N p» 1s the
product of the number of paths at level n, (Z — 1)", multiplied by the probability of
surviving the n steps to the perimeter, p":

N,=[pZ- 1" (7.129)

If p(Z—1) < 1, this will vanish in the limit n — oco. If p(Z—1) > 1, N, will, in
fact, be infinite. Therefore, p, = 1/(Z — 1) for the Bethe lattice.

For more familiar lattices in two and three dimensions, values for p., and p,, are
usually determined by computer simulations using Monte Carlo techniques. Values of
these parameters are presented in Table 7.4. The critical cluster is found to be a fractal
structure of noninteger dimension, D. An approximate formula for the RB critical
probability is

d

-1 (7.130)

N[ —

Peb =

One may think of the factor d/(d — 1) as a correction arising from the formation of
closed loops in a finite-dimensional lattice.

A number of universal scaling relations pertain to the vicinity of the critical point,
p ~ pc. For example, the probability that a given bond belongs to the percolated
cluster is P ~ (p — p.)?, with 8 = (0.19, 0.41) for d = (2. 3). The fraction of bonds
that actually carry current (the backbone) is P' ~ (p — p.)¥, with g = (0.48, 1.05)
for d = (2, 3). For p > p., homogeneity of the lattice, on average, is maintained on
distance scales larger than the correlation length, &. The correlation length obeys the
scaling formula & ~ |p — p.|™", with the critical exponent given by v = (1.33, 0.88)

TABLE 7.4 Percolation Thresholds for Some Lattices in Two and Three Dimensions

Lattic Z d Des D¢ Deb

Honeycomb 3 2 0.653 91/48 0.696
Square 4 2 0.500 91/48 0.593
Triangular 6 2 0.347 91/48 0.500
Diamond 4 3 0.389 2.53 0.430
SC 6 3 0.249 2.53 0.312
BCC 8 3 0.180 2.53 0.246
FCC 12 3 0.198 2.53 0.119

Source: Data from M. Sahimi, Applications of Percolation Theory, Taylor & Francis, London, 1994.
“Fractal dimension of the critical percolation cluster.
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for d = (2.3). For p < p., & also determines the size of a typical cluster. Note that
the correlation length diverges at p = p..

Percolation is useful, for example, in analyzing the conductivity of a cermet, a
ceramic material with embedded metallic clusters. For low cluster concentration the
material is an insulator. As the concentration increases, one passes through the perco-
lation threshold and the conductivity grows until it saturates at the value of appropriate
to an amorphous metal.

7.17 Mott Metal-Insulator Transition

Imagine assembling a solid by starting with an array of atoms separated from each
other by large distances and gradually decreasing the lattice constant until solid-state
densities are achieved. When far apart, electrons are bound to their individual ions
and the material is an insulator. When close together the interaction of an electron
with its ion gets weakened by the presence of other electrons. If the other electrons
were free to move around, for example, the ion potential will be shielded from its
electron. For sufficiently strong shielding it is possible that the electron will no longer
be bound to its ion and will delocalize over the solid. Therefore, a metal—insulator
(M-T) transition may be expected to be seen. In more general situations a host insulator
or semiconductor may be doped with impurity atoms and the conductivity studied as
a function of increasing concentration of donors or acceptors.

The condition for the M-I transition density will be developed for the case of
hydrogen atoms, although, strictly speaking, there is the need to consider atoms with
an even number of electrons, so the bands have a possibility of being either full or
empty. Begin by assuming that there is a concentration of free electrons, n, and look for
the condition that the bound state is destroyed. In a metal the ion—electron interaction
is given by the screened Coulomb interaction (again assuming that Z = 1)

V() = ——— exp(—knrr), (7.131)
dmer

where krg = (3n€?/2¢EF)"/? is the inverse Thomas—Fermi screening length. Here € is
the electric permittivity of the host material and Ef is the Fermi energy.
The derivation of Eq. (7.131) proceeds from a semiclassical expression for the chem-
ical potential of an electron
2k

£
2m;

ep = 1, (7.132)

where kr = (372n)'/? and ¢ is the potential due to the ion. Combining this with
Poisson’s equation.

Vi = Z(n —Hig); (7.133)

with ng being the background ion density, and linearizing about n = ng gives the
Yukawa equation:

(V2 — Kp)op = —Es(r), (7.134)

whose solution is the screened Coulomb potential given in Eq. (7.131).
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A variational estimate of the energy of a bound state may be made. Assume a
wavefunction of the form (r) = N exp(—ar) with the normalization constant given
by N = a*?//7. The expectation value of the energy in this state is

pZ ﬁzaz 2o’
N Y = . : o
£ <1// l <2m: i > ' 1‘0> 2m: weQRa + kyg)? (7.135)

For small n, where krr is also small, there exists an absolute minimum in the E versus
« curve for @ > 0 and the material is an insulator. For small @ a minimum occurs at
o = () and the electron is delocalized over the solid so that the material is a metal.
The metal-insulator transition occurs when a critical value for « is reached such that
E =0 and 9E/8a = 0 occur simultaneously, that is, when

4rhek
T kg =1, (7.136)
mke
where a; = 47h’e/m}e® is the Bohr radius for donors in the material.

CONDUCTIVITY OF REDUCED-DIMENSIONAL SYSTEMS

As integrated circuits become smaller and smaller, one begins to probe the intrinsic
limits on the conduction process set by nature. Quantum wires refer to one-dimensional
conductors whose length is comparable to or less than the elastic scattering length of
the electrons passing through them. In this section two aspects of quantum wires are
studied. First, a newly discovered system presented by nature, the carbon nanotube, is
examined. Then the Landauer theory for conductivity will be developed and it will be
shown that the resistance of a carbon nanotube is quantized.

7.18 Carbon Nanotubes

In graphite each carbon atom sits at a vertex of a planar hexagonal honeycomb lattice
separated from its nearest neighbors by a bond distance d = 0.142 nm. The bonds are
composed of sigmalike molecular orbitals arising from the interaction of sp* hybrid
orbitals on the NN C atoms. There also delocalized 7-like molecular orbitals. In the
carbon nanotube most of the graphite sheet is wrapped into a seamless cylinder of
finite diameter rather than extending over a plane. This requires an admixture of sp?
hybrid orbitals, with the amount increasing as the radius of curvature decreases. The
nanotubes currently fabricated in a carbon arc at a temperature of 7 = 4000 K are
typically 1 um in length, with diameters ranging from 1 to 20 nm. The ends of the
tubes are often capped by an array of six carbon pentagons. In some cases one finds
nested nanotubes with an intertubular separation of 0.34 nm, which is close to the
distance between adjacent planes in graphite. Often, the nanotubes are bundled together
to form filamentary fibers. Even closed rings have been found. The interest in these
nanotubes stems from their high mechanical strength, light weight, and their potential
for use as microscopic wires. When subjected to bending stresses, the nanotubes will

deform, but they return to their original shape promptly when the stress is removed as
long as no rupture occurs.
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Figure 7.17. Section of graphite about to be wrapped into a chiral nanotube. The dotted lines
denote points to be joined.

The nanotubes are observed to have varying degrees of chirality (i.e., one may think
of rows of C atoms as if they were wire wound around a cylinder with various degrees
of pitch). Consider the primitive honeycomb lattice with a row of parallel hexagons.
Adjacent to this is another row of hexagons offset from the first row (Fig. 7.17), with
the pattern repeated periodically. The hexagons are located by specifying the primitive
vectors u| = idv/3.uy = d(iv3+ 3})/2, and writing Ry, = mu; 4 nup, where m and
n are integers. The chirality comes about during the folding into a cylinder when the
hexagon at Rgg is made to overlap the hexagon at Ry,. The circumference of the
cylinder is therefore C = |mu; + nuz| or C = d+/3(m? + n* + mn), and the diameter
is D = C/x. This is illustrated in Fig. 7.17, where m = 4 and n = 1. In the limit where
m and n become infinite, the nanotube becomes equivalent to a graphite sheet.

Depending on the numbers (m, 1) determining chirality, the fiber can be either a
semiconductor or a metal. This comes about as a consequence of the tight-binding
model for graphite with NN interaction . The honeycomb lattice has two inequivalent
sites, with the w-electron wavefunction amplitudes on these sites being Ay, and By,
in the unit cell designated by Ry, q. The coupled tight-binding equations determining
the energy eigenvalue. E, are

t(Bm.n + Bpu—1n + Bm.n—l) = EAm.n- (71370)
t(Am‘n + Am-l.n +Am.n—l) = EBy.n. (7137b)

(see Sections 7.8 and 7.9). Letting

Apn =Aexp(ik « Ryy) (7.138a)
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and
~ 3 A3
By, = Bexp Iiik * Ry + ik +d (1\/7_ +j§>} ; (7.1385h)
one finds that . _
EX(k) = 1?|1 + W 4 gfkum2, (7.139)

The bonding and antibonding energy bands for the delocalized 7-electron system are
given by

k:dv/3

2

4 cos?

3,4 cos @ - (7.140)

E. =it\/l +4cosT

The value of ¢ is 2.66 eV, as determined by a fit to the graphite band structure.

Wrapping the structure into a chiral cylinder restricts the solutions to a one-
dimensional band where the values of k are constrained by the periodicity condition
Run -k =27j, where j is an integer. Instead of having a two-dimensional band
structure extending over the hexagonal first Brillouin zone, the band structure is
defined on a series of parallel lines in the Brillouin zone given by this formula. In
Fig. 7.18, electronic band structures are presented for the cases (m.n) = (8,0) and
(m,n) = (7, 1). Note that in the former case there is a gap between the bonding and
antibonding states, so the nanotube is a semiconductor. In the latter case there is no
gap and the material is metallic.

The bonding and antibonding bands will be degenerate at some point in k
space when

|+ efku 4 piku _ (7.141)

Ifk - u; =27/3 and k + u, = 477/3, this equation will be satisfied. (Another possibility
is k+uy =47/3 and k » uy = 27/3.) Coupling this with the periodicity condition, it
is found that

2mm 4mn

k-Rmn=T T:erj. (7.142)
This will be satisfied for m +2n = 3. (In the other case it is n -+ 2m = 3 Jj-) When
this condition is obeyed, there is no gap between the bonding and antibonding bands,
and the nanotube is a metal. When m +2n =3+ 1 or m+ 2n = 3j+ 2, there is a
gap and it is a semiconductor.

It is possible to introduce defects into the nanotube in such a way that the number
of edges, vertices, and faces is not changed. One way of doing this is to replace a pair
of hexagons by a pentagon and a heptagon. Several other ways of accomplishing this
are possible. When one introduces these defects, a bend is introduced, the diameter
and helicity of the tubule changes, and the value of m + 2n changes, since m — m = |
and n — n F 1. It is thus possible to change metals to semiconductors and to fabricate
metal—semiconductor junctions simply by inserting a pentagon—heptagon pair in place
of a pair of hexagons. More generally, it should be possible to fabricate nanotube
heterojunctions by controlling the defect locations. For example, the (7.1) tube is
metallic, whereas the (8,0) tube is a semiconductor with a 1.2 eV energy gap. A
sketch of the (8,0)/(7.1) junction is given in Fig. 7.19. Some additional features of
carbon nanotubes may be found in Section W7.6.
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Figure 7.18. Band structures for carbon nanotubes for (a) (m.n)=(8,0) and (b)
(m,n) = (7, 1). The various curves correspond to values of j in the range 0 to 7.

There is evidence for weak localization in the electric conduction of nanotubes at
low temperatures (see Section W7.5). This comes about because the probability that
an electron entering a nanotube will backscatter is increased because of constructive
interference between a given electron path and a time-reversed path. If backscat-
tering is enhanced, it comes at the expense of transmission through the nanotube S
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Figure 7.19. The (8,0)/(7,1) junction between two carbon nanotubes. [From L. Chico et al,
Phys. Rev. Lett., 76, 971 (1996). Copyright 1996 by the American Physical Society.]

(i.e., conduction). Four-probe resistance measurements have shown a marked varia-
tion of the resistance of a nanotube with diameter and helical pitch. Resistances per
unit length are typically in the range 10* to 10° 2/m for diameters in the range 5 to
20 nm. Current densities as large as 6 x 10'° A/m? could be passed through a nanotube
without causing irreversible damage. The resistance grows considerably when there are
curves or kinks in the tubes.

There is also evidence’ that carbon nanotubes can serve as quantum-mechanical
wires in the sense that conduction occurs by having electrons tunnel through delocalized
quantum states. When idealized as a strictly one-dimensional system of length L, the
states of the wire are given by E, = (hinm)>/2mL?, with n a positive integer. The
energy separation between states, AE = firvg /L, can be substantial (i.e., on the order
of 0.6 meV for alength L = 3 um). Coherence lengths in excess of 140 nm and perhaps
as large as L have been inferred. For a Fermi velocity of 0.8 x 10® m/s this implies a
coherence time of several tenths of a picosecond.

It is possible both to fill and coat carbon nanotubes with molten materials, and
thus have them serve as templates. This occurs if the surface tension of the adsorbate

¥S. J. Tans et al., Nature, 386, 474 (1997).
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is sufficiently low (y < 0.2 N/m). For example, such materials as Pb, Bi, V10s, Se,
S, Cs. and Rb as well as oxides of Ni, Co, Fe, and U have been taken up by the
nanotubes. The formation of metallic nanowires seems to be related to the presence of
an incomplete electronic shell of the metal ions.

Recently, it was shown that arrays of carbon nanotubes can function as field-
emission electron sources and may therefore play a future role in the construction
of flat-panel displays. The large enhancement of the local electric field due to the
sharpness of the tube (lightning-rod effect) allows them to function with very high
efficiency. despite the nearly 5 eV work function of graphite. Additional properties of
carbon nanotubes are discussed Chapter W21.

7.19 Landauer Theory of Conduction

A quantum-mechanical description of the conduction process in one-dimensional wires
was developed by Landauer’. Rather than attempt to derive the general formula, in
this section attention is focused on an idealized model for the single-walled carbon
nanotube, and a formula for its conductance is developed. It will be seen that this
conductance is quantized (i.e., comes in multiples of a basic conductance).

The carbon nanotube will be treated as a hollow cylinder described by the coordi-
nates (z, ¢) and the electron is assumed to move freely on the surface of the tube. The
Schrisdinger equation governing the electrons is

2 2 2
[—h (6 +1 3 )—E} V(z, ¢) =0, (7.143)

2m \ 322 " a? 097

where a is the radius of the tube. Here m* is the effective mass of an electron in the
conduction band. One writes the wavefunction in the form y = expli(kz + n¢)], where
it must be an integer to maintain single valuedness in the azimuthal direction. and

lom*E  u?
k=T - 5 (7.144)
n- as

Note that there are two values for ¢, leading to the same k, as long as u =# 0. Also note
that for a given value of E, there is a maximum magnitude that ¢ can have, leading to
a real value for k. Landauer viewed quantum currents as Lransmission processes. Let
7 denote the transmission amplitude. The current is given by

< dk i
= —eZZ/_w SO0 f (B, )l = f(E ~eV. Dzl (7.145)
5O

where the unit step function ®(k) ensures that there is only a forward current. The
s-sum is over the two spin projections and the p-sum is over allowable integers. Since
the nanotube has a very long elastic-scattering length, it will be assumed that the

TR. Landauer, Philos Mag., 21. 863 (1970). See also D. S. Fisher and P. A. Lee, Phys. Rev. B, 23, 6851
(1981).
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transmission is perfect and |7|*> = 1. One says that the conduction is ballistic. The
voltage drop along the tube is denoted by V. For low-enough T, as in the case of
metals, one may approximate the Fermi factor product as

~ f(E,T)[O(E — Ef) — eVS(E — Er)]

eV
av, ——2-6(5 —Ep). (7.146)

The current becomes
82V oo hZMZ
= —_— S| E - = d
"= Z;/o ( w7 ez~ EF | 9Eu
2 % D
e’V heps
T 2 Z ; 2 (EF T 2mra?

*a

) =GV, (7.147)

where G is the conductance. Thus

2¢° 1
G= T <n =+ 5) . (7.148)

Here n is the number of subbands, defined by |u], that can conduct.
Experiments on carbon nanotube quantum resistors' find G = 2¢2 /i = (12.9 k2)-,
consistent with n = 1. Although this is not yet fully understood, it may be that the

Coulomb blockade effect prevents a larger number of electrons from traversing the
quantum wire,
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PROBLEMS

7.1 Graphite is a hexagonal crystal with a four-atom unit cell. In one plane there
is a honeycomb lattice with lattice constant a = 0.246 nm. The adjacent layer
has atoms sitting over the centers of the hexagons of the honeycomb lattice. The
interplanar spacing is large (0.337 nm) (see Fig. 1.27). This allows the interplanar

"'S. Frank et al, Science, 280, 1744 (1998).
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coupling to be neglected as a first approximation. Use the two-dimensional tight-
binding approximation to obtain the band structure for graphite.

7.2 Use the tight-binding approximation to obtain the band structure for linear poly-
acetylene. You may assume that there is one mobile 7-electron per carbon atom
(refer to Fig. W14.7).

7.3 Electrons are confined to a two-dimensional sheet with areal density N. If a
positive ion is placed on the sheet analyze the role played by the electrons in
possibly screening the potential of the ion.

7.4 Derive the equations for J,, J,, and J. in Section 7.13 for the magnetoresistance.

7.5 Show that the electronic density of states at Ef according to the free-electron
model is 3z/2EF per atom, 3N/4Ep per spin, and 3n/2Ep per unit volume
(z = valence, N = number of electrons, n = density of electrons).

7.6 For energies E and temperatures 7 at which the Fermi-Dirac distribution
f(E,T) <« 1, show that f(E, T) reduces to the classical Maxwell-Boltzmann
distribution exp[—B(E — p)]. For Cu at T = 300 K, to what electron energies
E — u does this correspond? What fraction of the electrons in Cu at 7 = 300 K
are excited to these. or higher, energies?

7.7 Calculate the mean free path and mobility of electrons in Cu at 7 = 300 K using
the electrical conductivity and the free-electron theory.

7.8 Calculate the drift velocity, (v), of electrons in Cu at T = 300 K in an electric
field of 100 V/m. Compare this with the Fermi velocity and explain the difference.

7.9 Compute the isothermal compressibility K = —(1/V)(dV /dP)r of a free-electron
gas.

7.10 Use a computer to calculate the m-electron energy spectrum of a fullerene
molecule, Cgo. assuming a tight-binding model with nearest-neighbor interactions.
The molecule is in the shape of a regular dodecahedron (see Fig. 4.8).

7.11 Show that in the tight-binding approximation [see Eq. (7.93)] ((Eqy —EP) =
Z|t|*, where the average is taken over the band.

7.12 Calculate the enhancement of the conductivity o(E)/og at T = 300 K according
to the Poole—Frenkel effect [Eq. (7.128)] for electric field strengths £ = 106, 107,
and 10® V/m in @-SiO, and in NaCl.

7.13 Consider the high-field, w.r > 1 limit of Eq. (7.109). Show that o, — 0 and
0y = —ne/B = —0o,, in this limit. The quantity oy, = 1/RyB is known as the
Hall conductivity.
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